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Abstract

T [Apt el al.. 1998] we tntroduced the hmperalive programiing
language Alma-0 that supports declarative programming. In this pa-
per we illustrate the hybrid programming style of Aima-0 by means
of various examples that complement those presented in [Apt e al.,
1998}, The presented Alma-0 programs ilustrate the versatility of the
language and show that “don’t know” nondeterminism can be natu-
rally combined with assignment.

1 Introduction

Logic prograunning languages. notably Prolog. rely on two hmportant fea-
tures: nondeterminism and unification. The form of nondeterminism used
is usually called “don’t know” nondeterminisuy, According to it some path
in the computation tree should lead to a correct ontcome.

There have been some efforts to incorporate this form of nondetermin-
ism into the lmperative progrannning paradigm. For early references see
{Cohen, 1979]. More recent examples are the languages Icon of [Griswold
and Criswold, 1983]) and SETL of [Schwartz et al., 1986).

In[Apt cf al.. 1998] we pursued this approach to programming by propos-
ing another, simple, imperative language Alma-0 that supports this form
nondeterminisu,

Our rationale was that almost 25 vears of experience with logic program-
ming led to an identification of the programming techniques that make it a



distinct programming paradigm. The imperative programming constructs
that support nondeterminism should support these programming techniques
in a natural way.

And indeed, we found that a number of logic programming jewels could
be reproduced in Alma-0 even though unification in the language is limited
to bare minimum and the language offers no support for symbolic program-
ming.

But we also found that other programs, such as the solution to the Eight
{Jucens problem. could be coded in Alma-0 in a more natural way than the
logic programming paradigm permits. Also, some programs, such as the
solution to the Anapsack problem. seem to be very natural even though
thev use both nondeterminism and assignment.

So o the bvbrid prograunming stvle of Alma-0 apparently calls for new
programming techniques that need to be better understood and explored.
This is the aim of this paper that can be seen as a companion article of [Apt
et ai. 19UXI

To this end we provide here a nwnber of Alma-0 programs that show
versatility of the language and provide further evidence shat the constructs
of the language cncourage a natural style of programuning. In pasticular,
Alma-0 programs without assignment are declarative in the sense that they
admit a dual reading as a logic formula.

it shouwld be elavified that in general two types of nondeterminisim have
been considered in programming languages. “don’t know” nondeterminism
and “don’t care” nondeterminism. According to the latter one each path
i the computation free shonld lead to a corvect outeome. This formn of
nondeterminism is present in the guarded command language of [Dijkstra,
19755, It leads to differeut issucs and different considerations.

The paper ic organized as tollows, In Section 2 we recall the basic ele-
ments of Alma-0. In the remainder of the paper we provide sclected examples
of Alma-0 prograans that complement those presented in [Apt ef al., 199%]
and illustrate its use in difterent contexts. More specifically, in Section 3
we preseub bwo versious ol a classical graph traversal problew. vamnely ihe
longest path problem. Tn Section 1 we show how a typical feature of the
logic prograwiniug paradigin, vacly negalion us failure, can be also prof-
tably exploited in Alma-0. Next, n Scction 5 we ilustrate how exccutable
specifications ean be written in Alma-0. Tn Section 6 we provide a maore
complex example of Aima-0 programming hy deseribing a solutinn to a clas-
sical scheduling problem. Finally, in Section 7 we draw some conclusions
and describe the current status of the Alma project.

2 The language Alma-0

Aima-0 is an extension of a subset of Modula-2 thai incindes nine new fea-
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MODULE tendigit;
VAR i, j, k, 1, count, sum: INTEGER;
a: ARRAY [0..9] OF INTEGER;

BEGIN
FORALL
sum := 0;
FOR i := 0 TO 9 DO
SOME j := 0 TO 10-sum DO
alil = j;
sum := sum + j
END;
END;
sum = 10;
FOR k := 0 TO 9 DO
count := 0;
FOR 1 := 0 TO 9 DO
IF a[1] = k THEN count := count + 1; a[k] >= count END;
END;
a[k] = count
END
DO
FOR i := 0 TO 9 DO WRITE(a[i]) END
END
END tendigit.

To better understand this program first note that any 10-digit number
that is a solution to this problem has the property that the sum of its digits
is 10.

Now, the first FOR loop nondeterministically generates 10-digit numbers,
written as an arrav, with this property. This is done by means of a SOME
statement. The equality afi] = j is used here as an assignment. while the
equality sum = 10 is used as a test.

The second FOR loop tests whether a candidate array is a possibie so-
lution. The testing can be abandoned if for some k the count exceeds the
value afk]. This explains the use of the test a{k] >= count.

The ahove described code is within the FORALL statement. so all solutions
10 the problem are generated and each of them is printed. The program
vields the unique solution. namely 6210001000,

The stili unexplained features of Alma-0 will be discussed later.

3 Graph Traversal

We now Hustrate by means of two examples how Alma-0 can be used in a
natural way for graph-related probiems.



3.1 Knight’s Tour

We begin with the following well-known problem.

Problem 2 Find a knight’s tour on the n x n chess board in which cach
field is visited is exactly once.

Here is a solution in Alma-0.

MODULE KmightTour;
CONST
N = 5;
TYPE
fi..N] = [i..N];
Board = ARRAY [1..N], [1..N] OF [1..N=N1;

PROCEDURE Next (VAR row, col: INTEGER);

VAR i, j: INTEGER;

BEGIN
EITHER
ORELSE
ORELSE
ORELSE
ORELSE
ORELSE
ORELSE
ORELSE
END;
row := row + 1i;
col := col + j;

(1 <= row) AND (row <= N};
(1 <= col) AND (col <= N)
END Next;
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VAR i, j, k: INTEGER;
x: Board;
BEGIN
x[1,1] = 1;
i=1;, =1
FOR k := 2 TO N*N DO
Next(i,j);
x[i,j] = k
END;
Print(x)
END KnightTour.

Here the Next procedure nondeterministically generates the coordinates
of the next field, given the current one. This is done now by means of an
ORELSE statement that explores all eight possibilities in turn.



After a call to Next the {(huplicitly) incremented value of k is assigned
to this new field. Note that this assignment. ali,j] = k. is performed by
means of an equality. This is crucial, as it also prevents that a field is visited
again. Indeed, if this is the case then ali, j1 has already a value and the
equality fails. In this case the backtracking takes place and the next, if any,
candidate field is generated.

3.2 Longest Path

In the Knight's tour problem the n x n chess board can be viewed as a graph
i which the squares ave the nodes and the possible kuight woves are the
arcs. In this way the knight tour problem accounts to finding a simple path
of maximal length. The length of this path equals n?, the number of nodes.

Consider now a more general problem of finding the longest path in an
arbitrary directed graph.

Problem 3 Given a directed graph G = (V, £) and two nodes vy, v € V
find the longest simple path that starts in vy and ends in vo.

Recall that this decision problem is NP-complete (see [Garey and John-
son. 1979, problem ND29. page 2131).

We assume that the graph is represented by its adjacency matrix. We
also emnploy an array for marking the visited nodes and for storing the cur-
rent longest path. In what follows we use the following tvpe declarations.

Graph = ARRAY [1..N7,[1..N] OF BOOLEAN;
PathMark = ARRAY [1..N] OF INTEGER;

The basic building block that we use for traversing the graph is the fol-
lowing function Successor that upon backiracking generates all successors
of a given node. The function fails if the node has no successor.

PROCEDURE Successor(G: Graph; X: Node): Node;
VAR i: Node;
BEGIN

SOME i := 1 TO N DO

GIX,1i]

END;

RETURN i
END Successor;

The following procedure LongestPath consists of some initializations
followed by a FORALL loop that explores all possible paths. Inside the FORALL
loop, each path is constructed by an inner loop that searches exhanstively
for unvisited successors until it gets to the requested final node.

In contrast to Problem 2, we do not know the length of the longest path
in advance. Therefore we use here a WHILE statement rather than a FOR



statement for constructing the path. In addition, for each generated path
we need to check its length against the currently longest one.

A node X is viewed as unvisited as long as Path[X] = 0. When X is
visited, Path[X] gets the value k which represents the position of X in the

path.

PROCEDURE LongestPath(G: Graph; InitNode, FinalNode: Node): PathMark;
VAR k, max: INTEGER;
i: Node;
Path, LongPath: PathMark;
BEGIN
FOR i := 1 TO N DO Path[i] := O END;
i := InitNode;
k := 0;
max := 0;
FORALL
WHILE (Path[i] = 0) AND (i <> FinalNode) DO
k = k+1;
Path[i] := k;
i := Successor(G,i) (* generate a successor
nondeterministically *)
END
DO
IF (i = FinalNode) AND (k > max)
THEN max := k; LongPath := Path END
END;
RETURN LongPath
END LongestPath;

The longest path is delivered by means of the return value of the proce-
dure. If no path between InitNode and FinalNode exists, then the variable
LongPath remains uninitialized, and thus the value returned is also an unini-
tialized array, which can be iested within ihe calling procedure by using the
built-in procedure KNOWN,

4 Use of Negation

One of the important notious in logic programning is negation by failure.
It is, i a nutshell, a meta-rule that allows us to conclude a negation of
a statement from the fact that it cannot be proved (using the resolution
method used in logic programming). Negation by failure is a very useful
concept that allows us to write sowe remarkably concise Drolog prograis,
Also, it supports non-monotonic reasoning. Actually, the negation by failure
wechanisw provides a cowputational uterpretation of the latier, a featurce
other main approaches to non-monotonic reasoning lack.

Negation by [ailure is supported in Alma-0, as well. In [act, as in logic
programming, it i the mechanism used to evaluate negated statements.



Counsequently, we can use it in Alma-0 in the same way as in logic prograu-
ming and Prolog.

In [Apt ef al, 1998] we already presented a number of programs that
used negation. Here we show an Alma-0 solution to the proverbial Tweety
problem, one of the classical benchmarks for non-monotonic reasoning. Let
us recall it.

The problem is to reason in the presence of default assumptions. In
the natural language they are often expressed by means of the qualification
“usually”. In what follows the “usual” situations are identified with those
which are not “abnormal”.

We stipulate the following assumptions.

e The birds which are not abnormal fly (i.e., birds usually fly).
e The penguins are abnormal.

o Penguins and eagles are birds.

e Tweety is a penguin and Toto is an eagle.

The problem is to deduce which of these two birds flies. Here is a solution
in Alma-0, where the code for Print is omitted.

MODULE penguin;
TYPE Animal = (Tweety, Toto);

PROCEDURE penguin(MIX x: Animal);
BEGIN

x = Tweety
END penguin;

PROCEDURE eagle(MIX x: Animal);
BEGIN

x = Toto
END eagle;

PROCEDURE ab(MIX x: Animal);
BEGIN

penguin(x)
END ab;

PROCEDURE bird (MIX x: Animal);
BEGIN

EITHER penguin(x) ORELSE eagle(x) END
END bird;

PROCEDURE fly(MIX x: Animal);
BEGIN
bird(x);



NOT ab(x)
END fly;

VAR x: Animal;

BEGIN
FORALL fly(x)
DO Print(x)
END

END penguin.

The use of the MIX parameter mechanism allows us to use each proce-
dure both for testing and for computing, as in Prolog. In particular, the
call f1y(x) yields to a nondeterministic computing of the value of x using
bird(x) and subsequent testing of it using NOT ab(x).

It is instructive to compare this program with the more compact Prolog
program (see, e.g., [Apt, 1997, page 303]):

penguin(tweety).

eagle(toto).

ab{X) :- penguin{(X).

bird(X) :- penguin(X).
bird(X) :- eagle(X).

fly(X) :- not ab(X), bird(X).

While logically both programs amount to equivalent formulas we see that
it is difficult to compete with Prolog’s conciseness.

Other natural uses of negation in Alma-0 can be found in some other
programs in this article.

5 Executable Specifications

The next example shows that in some circumstances Alma-0 yields programs
that are more intuitive than those written in Prolog.

1n general, specifications can and do serve many different purposes. The
issue whether specifications should be executable or not has been for a long
time a subject of a heated discussion, see, e.g. [Fuchs, 1992]. We do not wish
to enter this discussion here but we show how Alma-0 supports exccutable
specifications in a very natural way.

As an example, consider the problem of Hnding the lexicographically
uext permutation, discussed in [Dijkstra, 1976).

To specify this problem recall that by definition a sequence outy, ..., outy
is a permutation of iry, ... dny if for some function 7 from [1..N] onto itself
we have

outy, ..., 0ul N = iNg(1)s- -5 g(N)-

This definition directly translates into the following Alma-0 program:



TYPE Sequence = ARRAY [1..N] OF INTEGER;

PROCEDURE Permutation(VAR in, out: Sequence);
VAR pi: Sequence;

END; (* pi is a function from 1..N onto itself and ... *)
FOR i :=1 TO N DO
out[il = in[pil[il]
END (* out is obtained by applying pi to the indices of in *)
END Permutation;

The procedure Permutation provides, upon backtracking, all permuta-
tions of the given input sequence.

Next, we need to define the lexicographic ordering. Let us recall the
definition: the sequence ay,...,an precedes lexicographically the sequence
by, ..., by if some i in the range [1..N] exists such that for all 4 in the range
[1;.?'- — i} we have aj = bj, and a; < b;.

In Aima-0 we write these specifications as follows:

PROCEDURE Lex(a,b: Sequence);
VAR i, j: LNTEGER;
BEGIN
SOME i := 1 TO N DO
FOR j := 1 TO i-1 DO

alil = bljl
END;
alil < bli]
END
END Lex;

Now b is the lexicographically next permutation of ¢ if

e b is a permutation of g,

e g precedes b lexicographically,

e no permutation exists that is lexicographically between a and b.

This leads us to the following procedure Next that uses an auxiliary
procedure Between, which checks whether a permutation exists between a
and b:

PROCEDURE Between{a,b: Sequence);
VAR c: Sequence;

10



BEGIN
Permutation(a,c);
Lex(a,c);
Lex(c,b)

END Between;

PROCEDURE Next (VAR a, b: Sequence);
BEGIN

Permutation(a,b);

Lex(a,b);

NOT Between(a,b)
END Next;

This concludes the presentation of the program. Note that it is fully
declarative and it does not use any assignment. It is obviously hopelessly
inefficient, but still it could be used on the example given in Dijkstra’s
book, to compute that 1 4 6 2 9 7 3 5 8 is the lexicographically next
permutationof 1 4 6 2 9 5 8 7 3.

It is interesting to see that the above program is invertible in the sense
that it can be also used to specify and compute the lexicographically previous
permutation. In fact, we can use for this purpose the same procedure Next —
it just suffices to pass now the given permutation as the second parameter
of the procedure Next. For this purpose both parameters are passed by
variable in the procedures Next and Permutation.

In this way we can compute for instance that 1 4 6 2 9 5 8 3 7 is the
lexicographically previous permutationof 1 4 6 2 9 5 8 7 3.

6 A Scheduling Application

We now show how Alma-0 can be employed to solve scheduling problems.
In particular. we introduce a specific scheduling problem known as the uni-
versity course timetabling problem and discuss its solution in Alma-0.

6.1  Problem Definition

The course timetabling problem cousists in the weekly scheduling for all the
lectures of a set of university courses in a given set of classrooms. avoiding
the overlaps of lectures having common students. We consider the basic
problem {which is still NP-compliete). Many variants of this problem have
been proposed in the Tikerabure. They involve more complex consbrainbs and
usually consider an objective function to be minimized {see [Schaerf, 1995]).

Problem 4 There arc g courses Ky, ..., K,, and cach course K; consists of
ki required lectures, and p periods L..p. For all i € 1..q. all lectures i € 1..k;
must be assigned to a period & in such a way that the following constraints
are satisfied:

11



Conflicts: There are ¢ curricula Sy, . . ., S¢, which are groups of courses that
have common students. Lectures of courses in S; must be all scheduled
at difterent times, tor each { € 1..c.

Availabilities: There is an availability binary matrix A of size ¢ x p. If
a;; = 1 then lectures of course 4 cannot be scheduled at period j.

Rooms: There are » rooms available. At most r lectures can be scheduled
at period k, for each k € 1.p.

6.2 A solution in Alma-0

We now provide a solution of this problem in Alma-0. We start with the
constant and type definitions necessary for the program.

CONST
Courses = 10; (* p *)
Periods = 20; (* g *)
Rooms = 3; (*x r %)

TYPE
AvailabilityMatrix = ARRAY [1..Courses],[1..Periods] OF BOOLEAN;
ConflictMatrix = ARRAY [1..Courses],[1..Courses] UF BOULEAN;
RequirementVector = ARRAY [1..Courses] OF INTEGER;
TimetableMatrix = ARRAY [1..Courses],[1..Periods] OF BOOLEAN;

Conflicts are represented by a ¢ x ¢ matrix of the type ConflictMatrix
such that the clement (2, §) of the matrix is ¢ruc if courses K; and K belong
simultaneously to at least one curriculum.

The solution is returned by means of a ¢ X p boolean matrix of the type
TimetableMatrix. Each clement (7. 7) of the matrix is true if a lecture for
the course Kj is giveu at period j and false otherwise.

The procedure Timetabling provides the solution of this problem in
Alma-0. Tt follows faithfully the specification of the problem and it performs
an exhaustive backtracking search for a feasible solution.

For each course K| the procedure looks for a number of periods equal
to the number of lectures &; of the course. The array BusyRooms counts
the number of rooms already used for each period, and is used to check the
room occupation constraints.

In order to avoid cxploring symmetric solutions for the lectures of a
course, eacht lecture is always schieduled laber thau Lhe previously schieduled
lectures of the same course. This is doue by using the variable Period0fPre-
viousLecture which keeps track of the period of the most recently scheduled
lecture,

PROCEDURE Timetabling{Available: AvailabilityMatrix;
Conflict: ConflictMatrix;
Requirements: RequirementVector;



VAR Timetable: TimetableMatrix);
VAR
BusyRooms : ARRAY [1..Periods] OF INTEGER;
C, Ci1, L, P : INTEGER;
PeriodOfPreviouslLecture : INTEGER;
BEGIN
FOR P := 1 TO Periods DO
BusyRooms[P] := 0;
END;
FOR C := 1 TO Courses DO
PeriodOfPreviousLlecture := 0;
FOR L := 1 TO Requirements[C] DO
SOME P := PeriodOfPreviousLecture+l TO Periods DO
Available[C,P];
BusyRooms[P] < Rooms;
FOR C1 := 1 TO C-1 DO
NOT (Conflict[C1,C] AND Timetable[C1i,P])
END;
Timetable[C,P] := TRUE;
BusyRooms[P] := BusyRooms[P] + 1;
Period0fPreviousLecture := P;
END
END
END
END Timetabling;

The proposed procedure can solve only relatively small instances of the
problem. For larger ones more complex algorithms and heuristic procedures
are needed (see [Schaerf, 1995]).

6.3 Additional Functionalities

If no solution to the given problem instance exists, it is in general necessary
to relax some of the constraints. The following procedure checks whether a
solution exists when one single conflict constraint is relaxed. If the solution
of the relaxed instance of the problem is found, its solution is returned along
with the constraint which has been relaxed. This constraint is returned by
means of two courses ¢t and c¢2 which are no more considered in conflict.

PRUCEDURE RelaxedTimetabling(Available: AvailabilityMatriy;
VAR Conflict: ConflictMatrix;
Requirements: RequirementVector;
VAR Timetable: TimetableMatrix;
MIX ci, c2: INTEGER);
VAR
i, j: INTEGER;
BEGIN
EITHER



Timetabling(Available, Conflict, Requirements, Timetable)
ORELSE
SOME i := 1 TO Courses-1 DO
SOME j := i+l TO Courses DO
Conflict[i,j];
cl =1i; c2 = j;
Conflict[i,j] := FALSE;
Timetabling(Available, Conflict, Requirements, Timetable)
END
END
END
END RelaxedTimetabling;

Finally, the following procedure produces all relaxed and non-relaxed
solutions of the problem. The simple code for the procedures Initialize
and PrintSolution is omitted.

PROCEDURE CreateTimetable;
VAR
Available: AvailabilityMatrix;
Conflict: ConflictMatrix;
Requirements: RequirementVector;
Timetable: TimetableMatrix;
NbrSolutions: INTEGER;
cl, c2: INTEGER;
BEGIN
Initialize(Available,Conflict,Requirements,Timetable);
NbrSolutions := 0;
FORALL
RelaxedTimetabling(Available,Conflict,Requirements,Timetable,cl,c2)
DO
NbrSolutions := NbrSolutiomns + 1;
WRITELN(’Solution number ’,NbrSolutiomns);
PrintSolution(Available,Timetable);
IF KNOWN(c1)
THEN WRITELN(’Conflict between course ’, ci,’ and ’,c2,’ relaxed’)
ELSE WRITELN(’No constraint relaxed for this solution’);
END
END;
IF NbrSolutions > O
THEN WRITELN(’Number of solutiomns : ’,NbrSolutions)
ELSE WRITELN(’No solution found.’);
END;
WRITELN
END CreateTimetable;

Note the use of the built-in procedure KNOWN that checks whether the

variable c1 is initialized or not. This test allows us to check whether a
constraint has been relaxed.

14



Finally, note that c1 and c2 are passed by MIX. This way, not only a
variable but also a constant can be supplied as an actual parameter. For
example, the following call searches for a solution in which the possible
relaxation involves course K;:

RelaxedTimetabling(Available,Conflict,Requirements, Timetable,1,c);

Here ¢ is an uninitialized variable.

7 Conclusions

In this paper we presented a number of programs written in Alma-0. They
were chosen with the purpose of illustrating the versatility of the resulting
programming style. The solution to some other classical problems, such
as a-f search, STRIPS planning, knapsack, and Eight Queens, have been
already provided in [Apt et al., 1998].

These programs show that imperative and logic programming can be
combined in a natural and effective way. The resulting programs are in
most cases shorter and more readable than their counterparts written in
imperative or logic programming style.

Let us review now the work carried out on Alma-0. The implementa-
tion of the language Alma-0 is based on an abstract machine, called AAA,
that combines the features of a RISC architecture and the WAM abstract
machine. In the current version the AAA instructions are translated into C
code. The implementation is described in [Apt et al., 1998] and explained
in full detail in [Partington, 1997]. The Alma-0 compiler is available via the
Web at http://www.cwi.nl/alma.

An executable operational specification of a large fragment of Alma-0 is
provided using the ASF+SDF Meta-Environment of [Klint, 1993]. This is
described in [Apt et al., 1998] and comprehensively explained in [Brunekreef,
1998].

An extension of Alma-0 that integrates constraints into the language is
the subject of an ongoing research. Various issues related to such integration
are highlighted in [Apt and Schaerf, 1998). In particular, the role of logi-
cal and customary variables, the interaction between the program and the
constraint store, the local and global unknowns, and the parameter passing
mechanisms are considered there.

Finally, in [Apt and Bezem, 1998] a computational interpretation of first-
order logic based on a constructive interpretation of satisfiability w.r.t. a
fixed but arbitrary interpretation is studied. This work provides logical
underpinnings for a fragment of Alma-0 that does not include assignment
and allows us to reason about Alma-0 programs written in this fragment.
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